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Abstract

In this paper an approximate earthquake analysis is presented for multistory building structures. The building is
stiffened by an arbitrary combination of lateral load-resisting subsystems (shear walls, frames, trusses, coupled shear
walls, cores). We consider stories with identical stiffnesses and masses, however the mass at the top floor may be dif-
ferent. The analysis is based on the continuum method. The spatial vibration problem of the replacement beam is solved
approximately. Simple formulas are given to calculate the periods of vibration and internal forces of a building
structure subjected to earthquakes.

The utility and accuracy of the method is demonstrated by two numerical examples, in which the approximate
solution is compared with finite element calculations.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Eigenfrequency; Internal forces; Spatial vibration; Approximate analysis; Building

1. Introduction

During an earthquake damage to buildings is largely caused by dynamic loads. Therefore, to design
buildings resistant to earthquakes, the dynamic characteristics of the building must be known. The
important characteristics, such as circular frequencies and mode shapes can be calculated by numerical
means, such as finite element methods. While such methods are necessary for final design, approximate
analysis are most helpful in preliminary design. Analytical tools shed light on the use of different structural
elements and on their dimensions. This type of information can greatly facilitate the numerical calculations,
leading to computational efficiency and savings in effort and time. Analytical results are also useful in
verifying numerical results, a necessary step when using complex computer codes.

*Corresponding author. Tel.: +36-1-463-16-61; fax: +36-14631099.
E-mail addresses: gtarjan@hotmail.com (G. Tarjan), lkollar@eik.bme.hu (L.P. Kollar).
! Tel.: +36-1-463-1317; fax: +36-1-463-1773.

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijs0lstr.2003.10.021


mail to: gtarjan@hotmail.com

1412 G. Tarjan, L.P. Kollar | International Journal of Solids and Structures 41 (2004) 1411-1433

Recognizing the importance of analytical approaches, many investigators have presented analytical
solutions for the response of buildings to dynamic loads.

The most widely used approximate calculations are based on the “continuum method” (Hegedls and
Kollar, 1999; Skattum, 1971; Stafford Smith and Coull, 1991; Szerémi, 1978; Zalka, 1993, 1994, 2000),
when the stiffened building structures is replaced by a (continuous) beam. Several authors applied the
continuum models to calculate the dynamic characteristics of building structures stiffened by one or several
lateral load-resisting subsystems, which vibrate in a symmetry plane (plane problem) or undergo lateral-
torsional vibration (spatial problem).

Skattum (1971) solved the differential equation of the lateral vibration of one load-resisting subsystem
and presented the results in a number of figures, however his results are too tedious for design purposes.
Basu (1983), Basu et al. (1984) and Kollar (1991) gave design charts for the circular frequency, however
their results are limited for not slender buildings. Rosman gave design charts for the circular frequency of
several lateral load-resisting subsystems. His results are applicable for bracing systems consisting of shear
walls and slender frames. L. Kollar (who is not the author of this article) and Ivanyi (Kollar and Ivanyi,
1966) presented an approximate expression for the circular frequency of frame structures, the accuracy of
which (for a 10 story building) is between —16% and +30% (Kopecsiri, 1997). Rutenberg (1975, 1979) and
Stafford Smith and Crowe (1986) worked out explicit expressions for the lateral vibration of one or several
lateral load-resisting subsystem, however these solutions are limited for a certain parameter range (Potzta,
2002; Stafford Smith and Yoon, 1991). Ng and Kuang (2000) presented the solution of lateral and lateral—
torsional vibration of one or several lateral load-resisting subsystems, however they neglected the com-
pressibility of columns. Zalka (2001) and Kopecsiri and Kollar (1999a,b) derived expressions for the

Table 1
Summary of methods available in the literature to calculate the dynamic characteristics of replacement beams
Author\subsystem Circular frequency Remark Internal forces Remark
Plane Spatial Plane Spatial
problem problem problem problem
One Several One Several One Several One Several
Skattum (Skattum, 1971) 4 - - - Charts ~) - - - Charts
Basu (Basu, 1983; Basu et al., (y/) - - - Charts ) - - - Charts
1984), Kollar (Kollar, 1991)
Rosman (Rosman, 1974), ) W) - - Charts - - - - -
(Rosman, 1973)
L. Kollar (Kolldr and Ivanyi, (/) (V) - - Expression  — - - - -
1966)
Rutenberg (Rutenberg, 1975, (/) (V) - - Expressions — - - - -
1979)
Stafford Smith and Crowe ) W) - - Expressions — - - - Charts
(Stafford Smith and Crowe,
1986)
Stafford Smith and Yoon - - - - Expressions (v/) (V) - - Charts
(Stafford Smith and Yoon,
1991)
Ng (Ng and Kuang, 2000) ) ) W) ) Expression  — - - - -
Zalka (Zalka, 2001) Vv vV V4 4 Table - - - - -
Kopecsiri (Kopecsiri and 4 Vv 4 V4 Expression  / - - - -
Kolldr, 1999a,b)
Present article Vv Vv Vv Vv Expression  / Vv Vv Vv -

The parentheses mean that the results are applicable only for a parameter range.
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circular frequency which has general applicability. The error of Kopecsiri’s formula in the first circular
frequency is between 0% and —16%. Zalka improved the accuracy of the case when the compressibility of
the columns are negligible, however, in general, the accuracy of his solution is between —16% and +16%. (In
Section 5 we present an approximate calculation for circular frequency of lateral or lateral-torsional
vibration of one or several lateral load-resisting subsystems. The error in the first circular frequency of in-
plane vibration is between —2.3% and +2.3%).

To calculate the base internal forces arising from earthquakes we can find solutions only for lateral
vibration of one lateral load-resisting subsystem. Skattum (1971) determined the mode shapes of lateral
vibration, however he did not present the calculation of the earthquake forces. Basu (1983) and Basu et al.
(1984) gave design charts to calculate the base shear force when the compressibility of the columns are
negligible. Stafford Smith and Yoon (1991) worked out approximate formula to calculate the base shear
force also using design charts. His solution is not applicable for tall rigid frames and braced frames.
Kopecsiri and Kollar (1999a,b) gave expression for base shear and for overturning moment. (In Section 6
we present an approximate calculation for base internal forces of lateral or lateral-torsional vibration of
one or several lateral load-resisting subsystems.)

The aforementioned analytical investigations are summarized in Table 1. It is seen that none of the
previous solutions provides the base internal forces in torsional vibration. In this paper methods are
presented for calculating these parameters. In addition, method is given for calculating the circular fre-
quencies without the need of design tables.

2. Problem statement

We consider a building structure which contains an arbitrary combination of lateral load-resisting
subsystems, i.e. shear walls, coupled shear walls, frames, trusses and cores. The arrangement of the stiff-
ening system is either symmetrical or arbitrary (Fig. 1).

The arrangement of the lateral load-resisting subsystems is identical at each floor. The dimensions and
stiffnesses at every story are also identical, the masses of the individual floors and their horizontal distri-
butions are the same except at the top floor. (Uniform mass distribution represents a building with the same
concentrated mass at every story (mh, where m is the mass per unit height and 4 is the story height) except
the top floor, where the concentrated mass is % In most practical cases the top floor has the same con-
centrated mass as the other floors, thus we extend the analysis taking a concentrated mass at the top into
account.)

Our aim is to develop simple approximate expressions for the calculation of the eigenfrequencies, and of
the seismic forces.

Z z
|- 4 |L
IR y
(a) (b)

Fig. 1. Symmetrical (a) and unsymmetrical (b) arrangements of the lateral load-resisting subsystems.
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3. Basic assumptions, approach

We assume that the material behaves in a linearly elastic manner.

The floors are considered to be rigid in their plane and they transfer only horizontal forces to the lateral
load-resisting subsystems. In addition, we assume that the floors connect the stiffening system “continu-
ously”, hence each cross-section of the building remains undeformed in the horizontal plane.

We apply the continuum method with the replacement beam developed in Potzta and Kollar (2003) to
obtain the eigenfrequencies and the mode shapes. The formulas to determine the stiffnesses of the
replacement beam are also given in Potzta and Kolldr (2003).

We formulated the differential equation of the freely vibrating replacement beam and solved when the
bottom is built-in and the top is free (Potzta, 2002), however these results are still too tedious for design
purposes and require the use of design charts or complicated expressions. To overcome these shortcomings
we use approximate solutions of the continuum with the aid of the following three theorems, which are
illustrated in Fig. 2.

Dunkerley’s theorem (Bishop and Jonson, 1960; Dunkerley, 1984): The structure contains two sets of
masses denoted by M; and M,. The circular frequency of the structure can be approximated by 1/w? =
1/w? + 1/w3, where w; is the circular frequency of the structure if M, is set equal to zero while w; is the
circular frequency if M, is set equal to zero.

Southwell’s theorem (Bishop and Jonson, 1960; Lamb and Southwell, 1921): The structure is charac-
terized by two stiffnesses, denoted by D; and D,, such that if we set either one of the stiffnesses equal to
infinity the structure would become infinitely rigid. The circular frequency can be approximated by
o* = o + w}, where w; is the circular frequency of the structure if D, is set equal to zero while w, is the
circular frequency if D, is set equal to zero.

Foppl's theorem: Foppl’s theorem was developed for the stability analysis of elastic structures (Tarnai,
1999) and is adopted here for the vibration analysis. The structure is characterized by two stiffnesses de-
noted by D; and D,, such that if we set either one of the stiffnesses equal to zero the structure would become
a mechanism and consequently would not be capable to carry any load. According to Foppl’s theorem the
circular frequency of such a structure is approximated by 1/w? = 1/w} + 1/w3}, where w; is the circular
frequency of the structure if D, is set equal to infinity, while w, is the circular frequency if D, is set equal to
infinity.

The above three approximations give the exact circular frequencies when the two eigenmodes, which
belong to the circular frequencies @, and w,, are identical.

As it was stated before we solved the differential equation of the continuum analytically and also with the
aid of the above theorems. In Section 5 and 6 we define the error of the approximation as

Er — Aapp - Acont (1)
Acont ’

w w, w, w W, w, w w, W,

M, M,

D, D D=
M, 5 oM, = RS I e N
D, D,

ELEDURE T , IR T
w2~w12 w? Wi R Wt W, w2~w12 w3

@ (b) (©)
Fig. 2. Illustration of Dunkerley’s (a), Southwell’s (b) and Foppl’s (c) theorems.
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where ““‘cont” refers to the exact solution of the continuum while “app” refers to the approximate solution,
and 4 can be e.g. the circular frequency, the base shear force etc.

The total error of the suggested method comes from three sources (i) each lateral load-resisting sub-
system is replaced by a continuous cantilever beam, (ii) these beams are then replaced by a single
replacement beam, and (iii) the characteristics of the replacement beams are calculated approximately.

In Appendix A we verify the approximate method by solving structures with the aid of a FE method
(ETABS) and by our approximate calculation. The error is defined as

Er — Aapp - AETABS 7 (2)

AgTABS
where “ETABS” refers to the FE program ETABS.

4. Replacement beam

One of the most widely used approximate calculations is based on the “continuum method” (Hegedis
and Kollar, 1999; Skattum, 1971; Stafford Smith and Coull, 1991; Zalka, 2000), when the stiffened building
structure is replaced by a (continuous) beam. The most general continuum model of a single lateral load-
resisting subsystem is a sandwich beam (Hegedis and Kollar, 1999), shown in Fig. 3. A sandwich beam is
characterized by three different stiffnesses: the global bending stiffness, Dy, the local bending stiffness, D; and
the shear stiffness, S (Fig. 3). The calculation of the replacement stiffnesses of different lateral load-resisting
subsystems are given in the literature (Beck, 1962; Hegedls and Kollar, 1999; Kopecsiri, 1997; Szerémi,
1978; Zalka, 2000), the general cases are summarized in Potzta and Kollar (2003).

When a symmetrical structure consists of several lateral load-resisting subsystems, the stiffnesses of the
beam which replaces the whole bracing system are (Potzta and Kollar, 2003):

B 1 B?

S=rZ, Dy=—— ", Di=d-=, (3)
C? %_%% C
where
“ D
A= oo | s
k=1 28y
- - Dy 72 Doy
b= 2D, Sk ’ (4)
()
C= - Do <7T2D0k>2
—1 (1_*_71122[;?)3 Sk
0
] Dy
[ 1] D
LI —s !
L] S
]

Fig. 3. Replacement sandwich beam.
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Do, Dy, and S; represents the stiffnesses of the kth lateral load-resisting subsystem, /, depends on the
variation of the lateral load (Potzta and Kolldr, 2003). In vibration analysis we suggest the following
approximate value of /y: /[y = 2H for the calculations in the first mode, [y = %H for the calculations in the
second mode, and /), = %H for third mode of vibration.

An unsymmetrical structure develops coupled lateral-torsional vibration. In the analysis of spatial
vibration problem the behavior of the lateral load-resisting subsystems is described by the following
stiffness matrices:

D lzz D lzy D lzw D 0zz D Ozy D 0z S vy S vz S 'y
[D } =1|D bz D Ly D bo | [D } =|D 0yz D Oy D Oy | [S } = Szy Sz S |- ( 5 )
D lwz D lwy D low D 0wz D 0wy D Owaw Swz Swy Sww

The calculation of elements of the stiffness matrices are given in the literature (Kollar, 2001; Potzta, 2002).

For the vibration analysis of an unsymmetrical structure (consisting of an arbitrary combination of
lateral load-resisting subsystems) the replacement stiffness matrices should be calculated as follows (Potzta
and Kollar, 2003):

B (©)
[D\] = [4] — [B][C] " [B],
Dy = iDtk»
where
- :l (([E] 7 VJMSM) (Do) + [Dl]k>,
B= knl nZ([E] + 7;3 [Do]k[S}k‘> Dy, [S]; ! <[E] +7;5[Do]k[S]kl) Dy, i
- k: n4([E} +7_32[D°]k[5h > (Do, [8]" ([E] +7;—§[Do]k[S}k')

[Dol,» [Dil,, and [S], are the stiffness matrices of the kth lateral load-resisting subsystem, /, has the same
values as in the lateral analysis.

5. Circular frequency and period of vibration

In this section simple formulas are developed for the calculation of the circular frequencies of
replacement sandwich beams. We recall that the circular frequency, w is related to the period of vibration, T
and to the frequency, f by

2n

. (0]
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5.1. Uniform mass distribution along the height

5.1.1. Plane problem

We consider a building structure with a symmetrical plan which vibrates in the x—z symmetry plane. The
stiffnesses of the replacement beam in the x—z plane are the shear stiffness (S), the global bending stiffness
(Dy) and the local bending stiffness (Dy). The circular frequencies of beams which undergo bending or shear
deformations only are summarized in Table 2 (Ko6pecsiri, 1997).

The circular frequency of a sandwich beam with constant mass distribution was determined in Kopecsiri
(1997). An approximate expression can be obtained by using Foppl’s and Southwell’s theorems (Kopecsiri,
1997):

-1
1 1 .
o (e IR o

mi m

where i = 1 belongs to the first mode of vibration, 2 and w”! are the circular frequencies of beams with
bending stiffnesses Dy and Dy, respectively; and «?. is the circular frequency of a beam which undergoes

shear deformation only and whose shear stiffness is S. From the second row of Table 2 we have

Table 2
Circular frequencies of beams capable bending deformations only or shear deformations only

Mass and
boundary Bending deformation only ~ Shear deformation only
conditions

" % %

1=1 =2 ¢=3 1=1 =2 ¢=3

. — D Ya — S
WBi = Ipi\ maT wsi = Msi\/ miz

Hp1 =T Hs1 =™
Kpp =2m Hsg = 2T
hps = 3T pgd = 3m

Ll 242

WD — D e — S
WBi = Kpi\/ mHT Wsi = Msi\/ maz?

ppy = 3.52 pgy = 0.57
gy = 22.03 fgo = 1.57
pps = 61.7 Jgz = 2.5m

1 !

. _ D . _ S
\UB—\/g\/IuHx ws =/
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D D S
By __ 0 B 1 S
W, = Hpi\/ mH® O = Hpi\/| mHY @y = Hsi/ mH? (10)

where m is the mass per unit height.

Numerical comparisons with the exact solution for the circular frequencies shows that for i = 1 Eq. (9)
may underestimate the circular frequency by up to 16% (—16% < Er <0) for i = 2 may underestimate the
circular frequency by up to 11% and overestimate it by up to 9% (—11% < Er < 9%), while for i = 3 may
underestimate the circular frequency by up to 4% and overestimate it by up to 6% (—4% < Er < 6%).

The accuracy of this approximation is suitable for design purposes. However, in some special cases the
designer would need more accurate results, thus we suggest a correction factor to reduce the errors of
Eq. (9). We derived an approximate formula in the function of the stiffness ratios o« = H \/DEI and f = \/DQE:

-1
2 — ; # B \2 B
e ((wﬁ%>2+<wzl>2> o) /“ & (1)
where
_ 2 1.1 . a4 >
‘f_100(1+2,7ﬁ)<1_1+e1.6:_60,01255_ )7 ¢=oa(l+4p). (12)

Eq. (11) may overestimate and underestimate the lowest circular frequency by up to 2.3%
(—=2.3% < Er<2.3%).

5.1.2. Spatial problem
The replacement beam of the stiffening system has the following stiffnesses (Potzta and Kollar, 2003):

Dy.. Dy, Do, Dy. Dy, Dy,
[Do] = Dyy. - Doy Doyor | [Di] = | D b= Dy Dio
Dow: Dowy Dowe Diy: Dy Divw (13)
Sy Sz S

[S] == Szy Szz Szu) ) Dt’
Soz Swy Sow

where [Dy] and [Dy] are the matrices of the global and local bending stiffnesses, respectively, [S] is the shear
stiffness matrix and D is the torsional stiffness. The calculation of the elements of [Dy], [Dj], and [S] are
given in Section 4. (We note that the axis of the replacement beam passes through the centroid of the
coordinate system which may be chosen arbitrarily.)

The circular frequencies for beams where both ends are simply supported and [D)] is zero were derived in
Kolldr (2001). Following the same steps as in Kollar (2001) but taking also [Dj] into account, we obtain the
following eigenvalue problem for the circular frequency, w,; (see Eq. (13) in Kollar (2001))

HY o HE 2 Dom
[(F[Do] IS B ID+ 116 - ]| § o =0, (14)
o 5 lpOm

where for simply supported beams u, and pg are given in the first row of Table 2; m is the mass per unit
height, matrices [M] and [G] are
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1 0 Zim 0 0 O
M=|0 1 v |, [61=1]0 0 o, (15)
Zn —Ym 24y 4z 0 0 D

O is the polar moment of mass (per unit height) about the mass center, and y,,, z,, are the coordinates of the
mass center. The eigenvector of Eq. (14) contains the amplitudes of vibration in the x—z plane (wy,), x—y
plane (vy,) and the amplitude of the torsional mode (y,,,).

For a cantilever beam, we adopt Eq. (14) as an approximation, but we introduce values for u, and ug
given in the second row of Table 2. We obtain three circular frequencies (and three corresponding eigen-
vectors) for each value of i. The accuracy of Eq. (14) was also investigated numerically. We obtained the
same accuracy for w as for the plane problem.

Doubly symmetrical building. When both the x—z and the x—y planes are symmetry planes, the building
vibrates either in the x—z plane, or in the x—y plane, or torsionally about the x-axis. In this case the off-
diagonal elements of matrices [Dy], [Di], and [S] are zero, and, accordingly, Eq. (14) gives the following three
sets of circular frequencies:

1 1\ D Lo
cuiml, = (L@DO” + Sw) + 1 Y yibration in the x—y plane,
1

4 )
it M mH
-1
1 1 Dy, . .
ol = (2—%) + 2—S> + L p” :[4 , vibration in the x—z plane, (16)
'Bi mH* M mH?

wmi 2 Dy, 2 Suw 4
Mot  HMsion oH

-1
1 1 Diyo Gl . . .

W = (— + —) ST A uéi@—le, torsional vibration.

We observe that the expression for w? . is identical to Eq. (9) developed for the plane problem.
Doubly symmetrical building with unsymmetrical mass. When the building is symmetrical with respect to

both the x—z and the x—y planes, however the mass is not symmetrical with respect to these planes, Eq. (14)

simplifies to

2

a)ymi . Vom
(’Ugmi ) - CUmi [M} Wom = Oﬂ ( 17)
m Oy l//0m

where [M] is defined by Eq. (15) and ., @.mi, and o, are given in Eq. (16).
5.2. Additional mass at the top

5.2.1. Plane problem
When there is an additional mass (M) at the end of the cantilever (Fig. 4), the lowest circular frequency
may be approximated by using Dunkerley’s theorem as

1 1\
2 _ 18
@ <w %) ! (18)

ml

1 1\
oy~ 5t wd)? 19
<(l,+s)>+<> (19

wM)Z (i
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D, M
D,
5 m m

(@) (b) (©

Fig. 4. Sandwich beam (a); constant mass distribution (b); constant mass and additional mass at the top (c).

and (see Table 2, third row)

D | D /S
CO/\é? = \/§ M]_(}';v Cl)i} = \/§ M]_II37 wi/[ = m (20)

The accuracy of Eq. (19) was found to be —6% < Er <0.

5.2.2. Spatial problem
In case of spatial vibration the circular frequencies belonging to i = 1 can be calculated as (see Dun-
kerley’s theorem)

11\
2 (- L 21
o= () 2
where wy, is calculated from the following equation (Potzta and Kollar, 2003):
H3 » » -1 3 1 s Vom
—[Do] " + HIS] + 3 (Dl + (G — 0, M[Q]| § wour ¢ =0, (22)
3 H- H
lp()M
where M is the additional mass at the top and matrix [Q] is given by
1 0 Zy
Q=10 1 — , (23)

S YRS T ok

where O is the polar moment of mass (at the top) about the mass center, and y,, z), are the coordinates of
the mass center.

Care must be taken in the use of Eq. (21). Eq. (21) may give unacceptable error when the horizontal
distribution of masses at the top is significantly different from the mass distribution on the other floors. In
this case the eigenvectors for the uniform mass distribution and those for the mass on the top are very
different. Hence, the use of Eq. (21) is recommended only if the scalar product of the eigenvectors are close
to unity, say Yoy Uom + WosrWom + WorWom > 0.9.

6. Internal forces
In the response modal analysis of buildings subjected to earthquakes an equivalent load is determined in

each mode of vibration. For in-plane vibration, when the ground motion is in the plane of the vibration, the
horizontal force is (Chopra, 1995)
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ff ma,(x) dx

fl(x) = fOH m(blz(x)dx

ma;(x)S4i, (24)

where Sy; is the spectral acceleration (which depends on the period of vibration, damping and the ground
peak acceleration), and ¢, is the mode shape.
For spatial vibration (Chopra, 1995)

fo Hyo o T Byi(x)
{fh=9 /2 ¢ = Hf(’ i, (xl} (M]drir) mM] dalx) bSa (25)
) o)} [M]{di(x)}dx bor ()
where f,; and f.; are horizontal forces in the y and z directions, respectively, f.; is the resultant moment
about the x-axis, and {:} is the influence vector (Chopra, 1995), which represents the direction of excitation.
For example if the excitation is in the x—y plane {1} = {1,0, 0}, if the excitation is in the x—# plane (where 5
is in the y—z plane, and the angle between y and 7 is ¥) {1} = {cos ¥, sin ¥, 0}, and for torsional excitation

{1} ={0,0,1}.

6.1. Uniform mass distribution along the height

6.1.1. Plane problem
In this section we consider symmetrical structures subjected to earthquakes in the symmetry plane.
Base shear force. The total horizontal load, which is identical to the base shear force, is obtained by
integrating Eq. (24) over the height of the building.
For uniform mass distribution, integration of Eq. (24) gives

/ £ dx = fO A )mSAf:vmeSAf, (26)
fO i

the values of the multiplier, v; are given in Table 3 for the first, second and third periods of vibration for
beams undergo bending deformation (v; = v, v; = v, v; = vp3) and for beams undergo shear deformation
only (v; = V1, Vi = V2, V; = Vs3).

For a sandwich beam, the multiplier lies between these two values i.e. for the first period of vibration
0.61 <v; <0.81, and for the second period of vibration 0.09 <v; < 0.188 and for the third
0.032 < v; < 0.065. To estimate v; for a sandwich beam we adopt the approximate formula of the circular
frequency. Egs. (9) and (10) gives

Table 3
The values of the multiplier, v; for the calculation of the internal forces
Mode Deformation Base shear force Shear force at 3/4H Base overturning moment
1 Bending deformation only (vg) 0.61 0.32 0.45
Shear deformation only (vs;) 0.81 0.32 0.52
2 Bending deformation only (vg) 0.188 0.09 0.039
Shear deformation only (vs,) 0.09 0.09 0.018
3 Bending deformation only (vgs) 0.065 0.033 0.00825

Shear deformation only (vg3) 0.032 0.033 0.0044
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i -1
1 1 D,
1= _ —i—,uzi a)i”.. 27
(lhz?i mDHO4 145; mi]2>  mH* @

The value of v; is approximated as

-1

-1
. VBi Vsi 1 » D 2
Vi = ( Dy +—s> o s | O (28)

2 2
Hpimms  MSimm?

where vp; and vg; are given in Table 3. This expression gives the exact value for v; when § — oo, or § — 0, or
Dy — 0, or Dy — oo and Dy — 0. For arbitrary values of Dy, D, and S Eq. (28) was verified numerically.
Comparisons with the exact solution of Eq. (26) for a sandwich beam showed that the accuracy of Eq. (28)
for v; is —9% < Er < 0, for v, is —37% < Er < 0, while for v3 is —27% < Er < 0.

Shear force at height 3/4H. The distribution of the horizontal forces is determined by the mode shape of
the beam (see Eq. (24)). In the first, second, and third modes of vibration the mode shape, the distribution
of horizontal seismic forces and the shear forces along the height are illustrated in Fig. 5. The maximum of
the shear force arises at the bottom of the cantilever, but in the second mode there is another local maxi-
mum (Fig. 5, middle).

This local maximum for different continuum models and different stiffness distributions was calculated,
and the location of the maximum was found to be between 0.6H and 0.9H. The maximum can be
approximated by evaluating the shear force at height 3/4H

V;3/4 = V[mHSA,'. (29)

The constant for beams with bending deformation or shear deformation only is given in Table 3 (column
“shear force at 3/4H”’), for the first three modes. For a sandwich beam Eq. (29) v; = vz; = v can be used.

|
I &
" | F(x) Vi)
|
X

—>7,
A M,

1

I
" } Fy() Vi)
I Vix)
1 £
- —>7,
|
I
1 I
T

A M,
Fig. 5. Mode shapes of vibration, horizontal seismic force distribution, shear force.
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The maximum error of this approximation for v; is —3% < Er < +3%, for v, is —2% < Er < 10%, while for
vz is —=7% < Er < +4%.

(The design value of the shear force can be calculated by combining the modal responses. There are
different combination rules given in design codes. We suggest to calculate the design value of shear force at
the bottom of the cantilever and at height 3/4H. At the top of the cantilever the shear force is zero. The
shear force diagram may be approximated by fitting a second order parabola to the design value of the
shear force at these three point. See Fig. 5.)

Base overturning moment. The base overturning moment can be calculated from the horizontal load
Eq. (24) as follows.

For a uniform mass distribution we have

f: ¢;(x) dx f(f{ x¢;(x)dx
Jy' ;(x) dx
The multiplier v; is given in Table 3 for a beam undergoes bending deformation and for a beam
undergoes shear deformation only. For a sandwich beam the multiplier lies between these two values. v; is
again calculated from Eq. (28) by introducing the values of v; given in the last column of Table 3. Numerical

comparisons showed that Eq. (28) gives the value of v; with an error —5% < Er < 1%, while for the second
and third modes the results are not acceptable.

H
M, = / xfi(x)dx = mS,; = vimH>S,;. (30)
0

6.1.2. Spatial problem
Base shear force. The base shear forces and the resultant torque (Fig. 6) can be calculated from the
integration of Eq. (25).

Vi i S
Vi p = / Sa pdx. (31)
I/(z)i 0 _f(/)i

First we consider the case when the structure consists of lateral load-resisting subsystems which undergo
shear deformation only. In this case the functions in the eigenvector (¢,;, ¢.;, ¢,,;) are cosines and Egs. (25)
and (31) give

S R D

=T T 1 Poi }Sais 32
P T gy TP (32)

I,
oy /Vw |

&
R

Fig. 6. The base shear forces (¥}, V.;), the resultant torque (7,,), and the base overturning moments (M,;, M.;).
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where {¢;} is the eigenvector of Eq. (14)

Vomi
{¢0i} = Womi ) (33)
lpOmi
and (for i = 1) v, = vs; = 0.81 (Table 3). The same equation applies when the lateral load-resisting sub-

systems have bending deformation only, but we must substitute v; = vz = 0.61 into Eq. (32).
When the lateral load-resisting subsystems are sandwiches, the horizontal forces can be calculated by

Vi T Vi Vomi
Vzi = MW![M]H Vziw(())mi S, (34)
Vi {do} M]{} Vorill omi

where v,;, v.;, and v,,; are multipliers with values between vg; and vg; (i.e. for i = 1, 0.61 < v; < 0.81 and for
i=2,0.09 < v, <0.188), see Table 3. To obtain a reasonable estimation for v, we rearrange the expression
obtained for the circular frequencies. By multiplication of Eq. (14) by [M]™ /m?. we obtain

Vomi H4 » HZ . -1 #123[ . 'ugl n Vomi 5
womi 0 = || = [Do] " [M] +—[S]"'[M] |+ % [M] D] + 5 [M] T[] Womi 0 @m- (35)
Yot Hp; H; H H Yomi

Similarly as it was done for the plane problem (see Eq. (28)) we introduce vs into this equation and
obtain

VyiUOm _1 -1
vgHY vl 13 -1 145, -1
iWom = D M S| M — M| D +—=[M] |G
g [( T Do )+ B )+ o)+ e )
Vwi‘//Om
Vomi
X Womi (Ui”-m, (36)
l//0mi

which is an approximate expression for the vector {vy,«vo,,,i,vz,-wo,,li,vw,-x//()mi}T. With this approximation
Eq. (34) can be directly evaluated for the seismic loads.

(Note that Eqs. (34) and (36) give the “exact’ values of the horizontal forces (¥;; and V2;) and the
resultant torque (¥,,;) when the structure is doubly symmetrical and in one direction it has shear defor-
mation only, in the other direction it has bending deformation only, and in torsion it has bending or shear
deformation only.)

As a rule, Egs. (34) and (36) give only approximate values of the forces and the resultant moment. The
numerical examples showed that the accuracies are the same as for the plane problem.

Base overturning moment. The base overturning moments can be obtained in the same way as the base
shear forces. (Note that we may use the approximation only for the first mode.)

From Eq. (25) we arrive at

M, H 1y T Vy1Uom
Mvi - / X Jrzl1 dx = M m [M]H2 Vzllw(())mll SAI ) (37)
B 0 o {¢01} [MH¢01} Vol Wom

where M., and M,, are the base overturning moments in the x—y and x—z planes. The vector on the right
hand side is approximated by Eq. (36) where vz = 0.45 and vg; = 0.52 (see Table 3).
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We may observe that when there is only bending deformation, v, = v, = v, = 0.45, and when there is
only shear deformation, v, = v, = v, = 0.52.

6.2. Additional mass at the top

6.2.1. Plane problem
When there is an additional mass on the top, we have to take the following additional force and base
overturning moment into account:

FM:MSA, MM :HMSA

6.2.2. Spatial problem
In case of spatial vibration when there are additional masses at the top, concentrated forces and moment
about the x-axis may arise on the top of the building structure. The resultant forces ( VyM and VM) and
moment (V) are (Chopra, 1995)
e T
ZA N MM[Q]{(Z’)O}SA_ (38)
V(f,w {b0} [M]N’o}

The additional base overturning moments have the values

MM =nvY, M) =HV.

7. Conclusion

We presented a simple approximate method for the calculation of the period of vibrations and base
internal forces of building structures with identical stories subjected to earthquakes. We considered sym-
metrical and unsymmetrical building structures stiffened by shear walls, coupled shear walls, trusses, frames
or cores. We solved the vibration problem in case of lateral, torsional and spatial lateral-torsional
vibration.

The accuracy of the approximation was verified by two numerical examples.
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Appendix A. Numerical example

In this section two numerical examples are presented to demonstrate the accuracy and robustness of the
approximate calculation.
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A.1. Symmetrical building

First we consider a doubly symmetrical building shown in Fig 7. The building is stiffened in the y
direction by solid walls while in the z direction by two solid walls at the symmetry plane and by two coupled
shear walls arranged symmetrically. The geometric and material characteristics are given in Table 5.

The approximate calculation was carried out in the following steps:

Step 1. Calculation of the stiffnesses of the lateral load-resisting subsystems (Table 2).

Step 2. Calculation of the replacement stiffnesses of the building by Egs. (3) and (4).

Step 3. Calculation the circular frequencies by Eq. (16).

Step 4. We will calculate the base shear force for an excitation in the x—z plane (Egs. (26) and (28)).

The periods of vibration and the base shear forces were also determined by a FE code (ETABS). In the
example uniform mass distribution was considered.
Step 1. The stiffnesses of the solid walls are (Table 2.)

DY = E"[" =885 x 10" kNm’, D=0, S§=cc. (A.1)
The stiffnesses of the coupled shear walls are

Df = 2EI™ = 1.77 x 10® kNm’,
DY = 2E¥ 4™ (") = 1.37 x 10° kN m?,

1 -1

2 wwa \ —1
OEul2(d +s1) | (212E ! ) ~9.99 % 10* kN.

= M(HM) ®

Gpd?Ay,

Step 2. The stiffnesses in the y direction are identical to two times those given by Eq. (A.1). The stiffnesses
in the z direction are calculated by Eqgs. (3) and (4), and are (with / = 2H = 166.4 m)

z
11 x3.7
N |
I wall — |
o~ CQN
| I——LI 19) T ﬁi ’
.B — i
N= —— wall
! %
1w V |
coupled shear walls coupled shear walls
16.65 16.65

Fig. 7. Numerical example of Appendix A.1.
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D; :
A=2| —% 4+ D | +2DY =9.96 x 10° kN m’,

nZDC
0
1+ 2se

C 2nc
Dy =Dy

o3 e = 107 x 107 kNm?,
(1+5)
0

D¢ 2Dc 2
c=2—20 )3<” 0) — 245 x 10" kNm®,

22D¢ Sc A3
(1 +T§9 (A.3)
1
D()ZZ = m =2.73 x 109 kNmz,
B 3B
B3
S., = nza =5.30 x 10® kN,
B 5 2
DIZZ:A—?:ZOI x 10° kN m~.
The torsional stiffnesses are (from Eq. (6) and (7))
1 1
Dipe = 720; =7.60 x 10" kKNm*, Dy, = Ersz) =9.82 x 10" kN m*,
(A4)

1
Su = 5778 =554 10" kNm*, D, =0.

Step 3. The circular frequencies are calculated by Eq. (16) by substituting uz, = 3.52, ug; = 0.5 (Table
2) which gives

Oyt = O.4O42L, Wppp = 0.8487L, Oom3 = 0.9857L. (A.5)
sec sec sec
Note that the ETABS code results in
1 1 1
Wy = 03939_3 Wz = 09125_7 Wom3 = 1080_7 (A6)
sec sec sec

which are within 9% of the above values.
We may improve the accuracy of Eq. (A.5) by taking Egs. (11) and (12) into account. These formulae
give instead of Eq. (A.5) the following values:

1 1 1
@y = 04051 —, @, =0.8734—,  wuu3 = 1.017—, (A7)
sec sec sec

which is within 6% of the ETABS calculation.

Step 1. The seismic forces are determined using the Response Modal Analysis. The calculation was
carried out according to Eurocode 8. The spectral accelerations are given in the function of the period of
vibration, (Eurocode 8)
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T; -1
0<T<Tp Sei—agst[lJrM}’
Ty
Ip<T,<Te S.= agStnﬁ7
A A8
Ie<Ti<Ip Sei:agSt']ﬁ<TC_) ) A

T\ T\
T, <T, Se,-agSmﬂ(T—C) (TD) .
D i

The parameters in Eq. (A.8) depend on the soil condition, on the location of the structure, and on the
damping ratio. We considered S; = 1,4, = 0.08 x 9.81, f =2.5, T3 =0.15,Tc =0.6, Tp =3, k) =1,k = 2,
n=1.323.

Substituting the periods of vibration 7; = 2n/w,,; (®,; is given by Eq. (A.5)) into Eq. (A.8) the spectral
accelerations, S,; can be determined in each mode of vibration. Base shear force in the x—z plane arise only
in the second mode, and it is calculated by Egs. (26) and (28) which yields

S,, = 0.085,

-1 -1
VB1 Vs1 1, D 2
vy = SR N I w2, = 0.6585 (A9)
((M%] % lug’] mf‘[z ) VB ! mH4) 1 7

VZQ = vzmHSAz = 1310.3 kN.

The ETABS code results in 7., = 1481.45 kN, which is within —12%.

Next we consider the same building, but we assume that the masses are offset by 5% in the y direction
(this is recommended by Eurocode 8). As a consequence, we have yy, = 2.035 m, (z); = 0), and the circular
frequency can be determined from Eq. (17). The first line gives w,,; = 0.4042, while the second and third
results in

wjli - wtzni (w(zumz + COfmi + gwfmiylif) + wrzumiwgmi =0. (AlO)
From Eq. (A.10) the circular frequencies in the second and third mode can be calculated, and are
1 1
W = 0.8229—  w,; =1.016—. (A.11)
sec sec
The ETABS code results in
1 1
W =0.8874—  w,3 =1.1108 —, (A.12)
sec sec

the error is less than 9%.

The base shear forces are calculated by Egs. (34) and (36) which are 7, = 1084.2 kN and V3 = 225.32
kN. The ETABS code results in 7, = 1254.03 kN and V3 = 220.43 kN. The error of the approximate
method is less than 14%.

The torque in the second mode is (Egs. (34) and (36)) V,,, = 7394.3 kN m. The ETABS code results in
V,, = 7889.77 KNm, the error of which is less than 7%. The calculated torque cause more than 40% increase
in the forces of the outermost load-resisting subsystems. According to EC-8 the torque may also be cal-
culated—as an approximation—by multiplying the shear force (Eq. (A.9)) by 5% of the size of the building
(and hence the torsional vibration is not needed to be considered). However this calculation yields
Vo = 2620.6 kN m which is only 35% of the above calculated value, and hence the approximation sug-
gested by EC-8 is not conservative.
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A.2. Unsymmetrical building

We now consider the building given in Fig. 8. In this example we wish to demonstrate the robustness of
the approximate calculation. The geometric and material characteristics of the structure are given in Table
4 and Fig. 8.

The same steps are followed as in Appendix A.1.

Step 1. In the longitudinal, y direction the building structure is stiffened by four shear walls
(k=1,2,3,4). In the x direction the stiffening system consists three shear walls (k =5,6,7) and two
coupled shear walls (k =8,9). The replacement stiffnesses of the lateral load-resisting subsystems are
(Kopecsiri and Kollar, 1999a)

Dy =~ 0, k:1a2a3a4a576777
Dy = 2E"T" = 3.45 x 10° kN m?,
Do = E¥I™ = 1.725 x 108 kN m?,

k=89,
k=1,2,3,4,5,6,7,

z
N 11 x3.7 N
T L
_ 5 o o
S [oe]
T owall | @ n
~ <~ k=3
~ 7 e =<
? k=1 I I
= — 0 D:él Y
=] k=2 ‘Tr T\D k=4
I / : 2 4

coupled shear walls m

9.25
16.65

5.55

Fig. 8. Numerical example of Appendix A.2.

Table 4
Geometric and material characteristics of the shear walls (see Figs. 7 and 8)

Number of stories 28

Story height, A

Total height, H

Mass/unit height, m

Mass moment of inertia/unit height, 6

Young’s modulus of walls, EY

Young’s modulus of beams, E,

Shear modulus of beams, G

Area of beams, Ay

Moment of inertia of beams, I,

Area of walls, 4" (in Appendix A.l)

Moment of inertia of walls, /** (in Appendix A.l)
Area of walls, 4" (in Appendix A.2)

Moment of inertia of walls, I'** (in Appendix A.2)

297 m

83.2m

280640 kg/m
69001 kgm?/m
1.95x 107 kN/m?
2.3x 107 kN/m?
9.58 % 10° kN/m?
0.07 m?
5.79x107* m*
1.4640 m?
4.5396 m*

2.158 m?

8.85 m*
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Dyi = 2E¥A" (%) =2.02 x 10° KNm?, k=8,9,
Si~ o0, k=1,2,3,4,567,
-1

~1
Eyly2 2 12E% 10\
S, = ((W) L (ZT> ) —9.99 x 10 kN, k—8,9.
ah(1+ 2ok )

Step 2. The stiffnesses in the global coordinate system are (Potzta, 2002):

(D], = Du[R];,  [Doly = Dok[R];,  [S]; = Sk[Rl; (A.13)
where
cos? oy —CoSaSinoy  F4 COS 0
[R], = | — cos oy sin oy sin® o —resinoy | . (A.14)
7% COS 0l —ry sin oy, I

In the y direction o, = 0 (k = 1,2, 3,4), in the x direction oy, = n/2 (k= 5,6,7,8,9), r is the distance of
the kth lateral load-resisting subsystem to the origin of the global coordinate system (Fig. 8):

k 1 2 3 4 5 6 7 8 9
Tk 1.85 -1.85 1.85 -1.85 -9.25 5.55 1.85 -16.65 —5.55

For [/, = 2H the replacement stiffness matrices of the structure are (Eq. (6)):

16 b I 0 0
4] = Z ( W‘_+le> =10 8171 x10"® —9.069 x 104

1+“2D0k ’
k=1 155k 0 —9.069 x 10"  1.258 x 10'6
S n? 1 B 1 n 1 -
=37 (1E1+ S st ) sy (1814 T Dt ) -
k 0 0

?

=1

& 0 0
{o 1.652 % 10" —1.834 x 10"
0 —1.834x 10" 2.544 x 10®
) . . (A.15)
[Do] = [4][B] '[A] = |0 4.041 x 10°  —4.486 x 10'°
0 —4.486x 10"  6.223 x 10!
& 0 0
[S] = [A][B] '[4][B] '[4] = | 0 1.999 x 10° —2.219 x 10°
0 —2219%10° 3.078 x 107

)

)

» 6.876 x 108 0 0
(D] = (Dol + [D1],) — [Do] = 0 1.208 x 10°  —70.978 x 10°
k=1 0 —70.978 x 10°  1.293 x 10!

We note that some of the stiffness matrices are singular because they contain a zero element in the main
diagonal. For numerical purpose we replaced the zero elements in the main diagonal by a small element ¢
(¢ > 0). (We have chosen the value of ¢ equal to the smallest element of the main diagonal divided by 10°.)
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Step 3. The natural frequencies are calculated from Eq. (14)

H4 B H2 -1 2 Vom
[(T[DO]lJF—z[S] l) + 55 D) — w2 m(M]| { wom ¢ =0, (A.16)
Hpi i H
l700m
where [M] is a diagonal matrix
1 00 1 0 0
mM=10 1 0l=[0o1 o
00 & 0 0 159.09

By substituting p,;, = 3.52, ug; = 0.57 (Table 2) into Eq. (A.16) we obtain the following three eigen-
values:

@}, = 1981, o, =0.635, wl, =0.352.

The following three eigenvalues are obtained by substituting puz, = 22.03, ug, = 1.57 (Table 2).
Eq. (A.16) results in

wh, = 64.61, wls=2486, o, =12.87.

The modes 7-9 are obtained by introducing g, = 61.7, ug; = 2.57 into Eq. (A.16) which yield
. =486.02, ol =195.02, i, =99.44.

The periods of vibration, T are

2

T (A.17)

W;

The results of the approximate calculation and those of the ETABS code are given in Table 5. The
maximum error is —10%.

Step 4. The base shear forces are calculated by Eq. (34). The structure has one plane of symmetry (x—y),
thus from the lateral vibration in the x—y plane base shear force arises only in the y direction. However from
the lateral (x—z)-torsional vibration both a shear force and a torque arise. The base overturning moments
are calculated from Eq. (37). The internal forces in the first three modes in case of different earthquake
excitations are given in Table 6. Table 6 also contains the results of the ETABS calculation, and the errors
of the approximation.

The design value of the internal forces can be calculated by combining the modal responses (Euro-
code 8):

Table 5

Comparison of the numerical and approximate results for the periods of vibration, (7), and the spectral accelerations, S.;
Mode Direction Period of vibration, T (s ) Error [%] Sei

Approximation ETABS

1 Lateral (x—z)-torsional 10.59 10.53 0.57 0.0416
2 x—y plane 7.89 8.26 —4.69 0.0751
3 Lateral (x—z)-torsional 4.46 4.32 3.24 0.234
4 Lateral (x—z)-torsional 1.75 1.86 -5.41 0.889
5 x—y plane 1.26 1.35 —-6.67 1.24
6 Lateral (x—z)-torsional 0.78 0.83 —-6.02 1.99
7 Lateral (x—z)-torsional 0.63 0.70 -10.0 2.47
8 x—y plane 0.45 0.50 -10.0 2.60
10 Lateral (x—z)-torsional 0.29 0.32 -9.38 2.60
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Table 6
Internal forces
Mode Excitation Internal force Approximation ETABS Error [%]
2 (x—y plane) Xy V, [kN] 1070 998.8 7.13
M, [kNm] 65635 61147 7.34
V. [kN] 2175 2170 0.26
3 (x—z plane-torsional) Xz V,, [kNm] 22031 22674 -2.84
M, [kNm] 129450 132772 -2.50
V. [kN] 223.6 253.7 -11.87
1 (x—z plane-torsional) X—=z V,, [kNm] 3839 3383 8.39
M. [kNm] 13879 15496 -10.43
S (x—y plane) x—y 7, [kN] 5423 5232 3.65
M, [kN m] 93549 90810 3.02
V. [kN] 5415.8 5008 8.14
6 (x—z plane-torsional) Xz V., [kIN m] 50927 48072 5.94
M, [kNm] 93333 89190 4.64
V. [kN] 1432 1464 -2.20
4 (x—z plane-torsional) Xz V,, [kNm] 22989 21037 9.28
M. [kNm] 24711 25987 -4.91
8 (x-y plane) Xy V, [kN] 3938 4026 -2.20
M, [kN m] 41561 41704 —-0.34
V. [kN] 2512 2561 -1.90
10 (x—z plane-torsional) P V., [kN m] 23428 23363 0.28
M, [kNm] 26543 26812 —-1.00
V. [kN] 1338.8 1336 0.22
7 (x—z plane-torsional) Xz V,, [kNm] 22401 19467 15.07
M, [kN m] 14124 14350 -1.57
6786 9
121601
V V2 = 6659 M} = M?) = .
)= Z\/{ C =Yy =1 200
68358 1
The ETABS calculation gives
6677 9
118173
V= V2 =14 6351 M} = M?} = :
)= Z\/{ G () =300 = { jesno

The maximum error is 5.43%. Including 15 modes in the ETABS calculation the design values of the base
shear force are

15
= \/V?=17050 kN,
1
15
Vo= \/V2=6500 kN,
1

which result less than 4% error.
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