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Abstract

In this paper an approximate earthquake analysis is presented for multistory building structures. The building is

stiffened by an arbitrary combination of lateral load-resisting subsystems (shear walls, frames, trusses, coupled shear

walls, cores). We consider stories with identical stiffnesses and masses, however the mass at the top floor may be dif-

ferent. The analysis is based on the continuum method. The spatial vibration problem of the replacement beam is solved

approximately. Simple formulas are given to calculate the periods of vibration and internal forces of a building

structure subjected to earthquakes.

The utility and accuracy of the method is demonstrated by two numerical examples, in which the approximate

solution is compared with finite element calculations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

During an earthquake damage to buildings is largely caused by dynamic loads. Therefore, to design

buildings resistant to earthquakes, the dynamic characteristics of the building must be known. The

important characteristics, such as circular frequencies and mode shapes can be calculated by numerical

means, such as finite element methods. While such methods are necessary for final design, approximate

analysis are most helpful in preliminary design. Analytical tools shed light on the use of different structural
elements and on their dimensions. This type of information can greatly facilitate the numerical calculations,

leading to computational efficiency and savings in effort and time. Analytical results are also useful in

verifying numerical results, a necessary step when using complex computer codes.
* Corresponding author. Tel.: +36-1-463-16-61; fax: +36-14631099.

E-mail addresses: gtarjan@hotmail.com (G. Tarj�an), lkollar@eik.bme.hu (L.P. Koll�ar).
1 Tel.: +36-1-463-1317; fax: +36-1-463-1773.

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2003.10.021

mail to: gtarjan@hotmail.com


1412 G. Tarj�an, L.P. Koll�ar / International Journal of Solids and Structures 41 (2004) 1411–1433
Recognizing the importance of analytical approaches, many investigators have presented analytical

solutions for the response of buildings to dynamic loads.

The most widely used approximate calculations are based on the ‘‘continuum method’’ (Heged}us and
Koll�ar, 1999; Skattum, 1971; Stafford Smith and Coull, 1991; Szer�emi, 1978; Zalka, 1993, 1994, 2000),
when the stiffened building structures is replaced by a (continuous) beam. Several authors applied the

continuum models to calculate the dynamic characteristics of building structures stiffened by one or several

lateral load-resisting subsystems, which vibrate in a symmetry plane (plane problem) or undergo lateral–

torsional vibration (spatial problem).

Skattum (1971) solved the differential equation of the lateral vibration of one load-resisting subsystem

and presented the results in a number of figures, however his results are too tedious for design purposes.

Basu (1983), Basu et al. (1984) and Koll�ar (1991) gave design charts for the circular frequency, however

their results are limited for not slender buildings. Rosman gave design charts for the circular frequency of
several lateral load-resisting subsystems. His results are applicable for bracing systems consisting of shear

walls and slender frames. L. Koll�ar (who is not the author of this article) and Iv�anyi (Koll�ar and Iv�anyi,
1966) presented an approximate expression for the circular frequency of frame structures, the accuracy of

which (for a 10 story building) is between )16% and +30% (K€opecsiri, 1997). Rutenberg (1975, 1979) and
Stafford Smith and Crowe (1986) worked out explicit expressions for the lateral vibration of one or several

lateral load-resisting subsystem, however these solutions are limited for a certain parameter range (Potzta,

2002; Stafford Smith and Yoon, 1991). Ng and Kuang (2000) presented the solution of lateral and lateral–

torsional vibration of one or several lateral load-resisting subsystems, however they neglected the com-
pressibility of columns. Zalka (2001) and K€opecsiri and Koll�ar (1999a,b) derived expressions for the
Table 1

Summary of methods available in the literature to calculate the dynamic characteristics of replacement beams

Authornsubsystem Circular frequency Remark Internal forces Remark

Plane

problem

Spatial

problem

Plane

problem

Spatial

problem

One Several One Several One Several One Several

Skattum (Skattum, 1971)
p

– – – Charts ðpÞ – – – Charts

Basu (Basu, 1983; Basu et al.,

1984), Koll�ar (Koll�ar, 1991)
ðpÞ – – – Charts ðpÞ – – – Charts

Rosman (Rosman, 1974),

(Rosman, 1973)

ðpÞ ðpÞ – – Charts – – – – –

L. Koll�ar (Koll�ar and Iv�anyi,

1966)

ðpÞ ðpÞ – – Expression – – – – –

Rutenberg (Rutenberg, 1975,

1979)

ðpÞ ðpÞ – – Expressions – – – – –

Stafford Smith and Crowe

(Stafford Smith and Crowe,

1986)

ðpÞ ðpÞ – – Expressions – – – – Charts

Stafford Smith and Yoon

(Stafford Smith and Yoon,

1991)

– – – – Expressions ðpÞ ðpÞ – – Charts

Ng (Ng and Kuang, 2000) ðpÞ ðpÞ ðpÞ ðpÞ Expression – – – – –

Zalka (Zalka, 2001)
p p p p

Table – – – – –

K€opecsiri (K€opecsiri and

Koll�ar, 1999a,b)

p p p p
Expression

p
– – – –

Present article
p p p p

Expression
p p p p

–

The parentheses mean that the results are applicable only for a parameter range.
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circular frequency which has general applicability. The error of K€opecsiri�s formula in the first circular

frequency is between 0% and )16%. Zalka improved the accuracy of the case when the compressibility of
the columns are negligible, however, in general, the accuracy of his solution is between )16% and +16%. (In

Section 5 we present an approximate calculation for circular frequency of lateral or lateral–torsional
vibration of one or several lateral load-resisting subsystems. The error in the first circular frequency of in-

plane vibration is between )2.3% and +2.3%).

To calculate the base internal forces arising from earthquakes we can find solutions only for lateral

vibration of one lateral load-resisting subsystem. Skattum (1971) determined the mode shapes of lateral

vibration, however he did not present the calculation of the earthquake forces. Basu (1983) and Basu et al.

(1984) gave design charts to calculate the base shear force when the compressibility of the columns are

negligible. Stafford Smith and Yoon (1991) worked out approximate formula to calculate the base shear

force also using design charts. His solution is not applicable for tall rigid frames and braced frames.
K€opecsiri and Koll�ar (1999a,b) gave expression for base shear and for overturning moment. (In Section 6
we present an approximate calculation for base internal forces of lateral or lateral–torsional vibration of

one or several lateral load-resisting subsystems.)

The aforementioned analytical investigations are summarized in Table 1. It is seen that none of the

previous solutions provides the base internal forces in torsional vibration. In this paper methods are

presented for calculating these parameters. In addition, method is given for calculating the circular fre-

quencies without the need of design tables.
2. Problem statement

We consider a building structure which contains an arbitrary combination of lateral load-resisting

subsystems, i.e. shear walls, coupled shear walls, frames, trusses and cores. The arrangement of the stiff-
ening system is either symmetrical or arbitrary (Fig. 1).

The arrangement of the lateral load-resisting subsystems is identical at each floor. The dimensions and

stiffnesses at every story are also identical, the masses of the individual floors and their horizontal distri-

butions are the same except at the top floor. (Uniform mass distribution represents a building with the same

concentrated mass at every story (mh, where m is the mass per unit height and h is the story height) except
the top floor, where the concentrated mass is mh

2
. In most practical cases the top floor has the same con-

centrated mass as the other floors, thus we extend the analysis taking a concentrated mass at the top into

account.)
Our aim is to develop simple approximate expressions for the calculation of the eigenfrequencies, and of

the seismic forces.
(a) (b)

z

y

z

y

Fig. 1. Symmetrical (a) and unsymmetrical (b) arrangements of the lateral load-resisting subsystems.
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3. Basic assumptions, approach

We assume that the material behaves in a linearly elastic manner.

The floors are considered to be rigid in their plane and they transfer only horizontal forces to the lateral
load-resisting subsystems. In addition, we assume that the floors connect the stiffening system ‘‘continu-

ously’’, hence each cross-section of the building remains undeformed in the horizontal plane.

We apply the continuum method with the replacement beam developed in Potzta and Koll�ar (2003) to
obtain the eigenfrequencies and the mode shapes. The formulas to determine the stiffnesses of the

replacement beam are also given in Potzta and Koll�ar (2003).
We formulated the differential equation of the freely vibrating replacement beam and solved when the

bottom is built-in and the top is free (Potzta, 2002), however these results are still too tedious for design

purposes and require the use of design charts or complicated expressions. To overcome these shortcomings
we use approximate solutions of the continuum with the aid of the following three theorems, which are

illustrated in Fig. 2.

Dunkerley’s theorem (Bishop and Jonson, 1960; Dunkerley, 1984): The structure contains two sets of

masses denoted by M1 and M2. The circular frequency of the structure can be approximated by 1=x2 ¼
1=x2

1 þ 1=x2
2, where x1 is the circular frequency of the structure if M2 is set equal to zero while x2 is the

circular frequency if M1 is set equal to zero.

Southwell’s theorem (Bishop and Jonson, 1960; Lamb and Southwell, 1921): The structure is charac-

terized by two stiffnesses, denoted by D1 and D2, such that if we set either one of the stiffnesses equal to
infinity the structure would become infinitely rigid. The circular frequency can be approximated by

x2 ¼ x2
1 þ x2

2, where x1 is the circular frequency of the structure if D2 is set equal to zero while x2 is the

circular frequency if D1 is set equal to zero.

F€oppl’s theorem: F€oppl�s theorem was developed for the stability analysis of elastic structures (Tarnai,

1999) and is adopted here for the vibration analysis. The structure is characterized by two stiffnesses de-

noted by D1 and D2, such that if we set either one of the stiffnesses equal to zero the structure would become

a mechanism and consequently would not be capable to carry any load. According to F€oppl�s theorem the

circular frequency of such a structure is approximated by 1=x2 ¼ 1=x2
1 þ 1=x2

2, where x1 is the circular
frequency of the structure if D2 is set equal to infinity, while x2 is the circular frequency if D1 is set equal to

infinity.

The above three approximations give the exact circular frequencies when the two eigenmodes, which

belong to the circular frequencies x1 and x2, are identical.

As it was stated before we solved the differential equation of the continuum analytically and also with the

aid of the above theorems. In Section 5 and 6 we define the error of the approximation as
Er ¼ Aapp � Acont

Acont

; ð1Þ
(a) (b) (c)

Fig. 2. Illustration of Dunkerley�s (a), Southwell�s (b) and F€oppl�s (c) theorems.
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where ‘‘cont’’ refers to the exact solution of the continuum while ‘‘app’’ refers to the approximate solution,

and A can be e.g. the circular frequency, the base shear force etc.

The total error of the suggested method comes from three sources (i) each lateral load-resisting sub-

system is replaced by a continuous cantilever beam, (ii) these beams are then replaced by a single
replacement beam, and (iii) the characteristics of the replacement beams are calculated approximately.

In Appendix A we verify the approximate method by solving structures with the aid of a FE method

(ETABS) and by our approximate calculation. The error is defined as
Er ¼ Aapp � AETABS

AETABS

; ð2Þ
where ‘‘ETABS’’ refers to the FE program ETABS.
4. Replacement beam

One of the most widely used approximate calculations is based on the ‘‘continuum method’’ (Heged}us
and Koll�ar, 1999; Skattum, 1971; Stafford Smith and Coull, 1991; Zalka, 2000), when the stiffened building
structure is replaced by a (continuous) beam. The most general continuum model of a single lateral load-
resisting subsystem is a sandwich beam (Heged}us and Koll�ar, 1999), shown in Fig. 3. A sandwich beam is

characterized by three different stiffnesses: the global bending stiffness, D0, the local bending stiffness, Dl and

the shear stiffness, S (Fig. 3). The calculation of the replacement stiffnesses of different lateral load-resisting
subsystems are given in the literature (Beck, 1962; Heged}us and Koll�ar, 1999; K€opecsiri, 1997; Szer�emi,
1978; Zalka, 2000), the general cases are summarized in Potzta and Koll�ar (2003).
When a symmetrical structure consists of several lateral load-resisting subsystems, the stiffnesses of the

beam which replaces the whole bracing system are (Potzta and Koll�ar, 2003):
S ¼ p2
B3

C2
; D0 ¼

1
C
B2 � 1

l2
0

C2

B3

; Dl ¼ A � B2

C
; ð3Þ
where
A ¼
Xn

k¼1

D0k

1þ p2D0k
l2
0
Sk

0
@ þ Dlk

1
A;

B ¼
Xn

k¼1

D0k

1þ p2D0k
l2
0
Sk

� �2 p2D0k

Sk
;

C ¼
Xn

k¼1

D0k

1þ p2D0k
l2
0
Sk

� �3 p2D0k

Sk

� 	2

:

ð4Þ
Fig. 3. Replacement sandwich beam.
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D0k, Dlk, and Sk represents the stiffnesses of the kth lateral load-resisting subsystem, l0 depends on the
variation of the lateral load (Potzta and Koll�ar, 2003). In vibration analysis we suggest the following

approximate value of l0: l0 ¼ 2H for the calculations in the first mode, l0 ¼ 2
3
H for the calculations in the

second mode, and l0 ¼ 2
5
H for third mode of vibration.

An unsymmetrical structure develops coupled lateral–torsional vibration. In the analysis of spatial

vibration problem the behavior of the lateral load-resisting subsystems is described by the following

stiffness matrices:
½Dl	 ¼
Dlzz Dlzy Dlzx

Dlyz Dlyy Dlyx

Dlxz Dlxy Dlxx

2
4

3
5; ½D0	 ¼

D0zz D0zy D0zx

D0yz D0yy D0yx

D0xz D0xy D0xx

2
4

3
5; ½S	 ¼

Syy Syz Syx

Szy Szz Szx

Sxz Sxy Sxx

2
4

3
5: ð5Þ
The calculation of elements of the stiffness matrices are given in the literature (Koll�ar, 2001; Potzta, 2002).
For the vibration analysis of an unsymmetrical structure (consisting of an arbitrary combination of

lateral load-resisting subsystems) the replacement stiffness matrices should be calculated as follows (Potzta

and Koll�ar, 2003):
½S	 ¼ p2½B	½C	�1½B	½C	�1½B	;

½D0	 ¼ ½B	½C	�1½B	 ½E	
�

� 1

l20
½B	�1½C	

��1
;

½Dl	 ¼ ½A	 � ½B	½C	�1½B	;

Dt ¼
Xn

k¼1
Dtk;

ð6Þ
where
A ¼
Xn

k¼1
½E	
� 

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k þ ½Dl	k

!
;

B ¼
Xn

k¼1
p2 ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k½S	
�1
k ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k;

C ¼
Xn

k¼1
p4 ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k½S	
�1
k ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1


 ½D0	k½S	
�1
k ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k:

ð7Þ
½D0	k, ½Dl	k, and ½S	k are the stiffness matrices of the kth lateral load-resisting subsystem, l0 has the same
values as in the lateral analysis.
5. Circular frequency and period of vibration

In this section simple formulas are developed for the calculation of the circular frequencies of

replacement sandwich beams. We recall that the circular frequency, x is related to the period of vibration, T
and to the frequency, f by
T ¼ 2p
x

; f ¼ x
2p

: ð8Þ
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5.1. Uniform mass distribution along the height

5.1.1. Plane problem

We consider a building structure with a symmetrical plan which vibrates in the x–z symmetry plane. The
stiffnesses of the replacement beam in the x–z plane are the shear stiffness ðSÞ, the global bending stiffness
ðD0Þ and the local bending stiffness ðDlÞ. The circular frequencies of beams which undergo bending or shear
deformations only are summarized in Table 2 (K€opecsiri, 1997).
The circular frequency of a sandwich beam with constant mass distribution was determined in K€opecsiri

(1997). An approximate expression can be obtained by using F€oppl�s and Southwell�s theorems (K€opecsiri,
1997):
Table

Circula
x2
mi ¼

1

ðxB0
miÞ

2

 
þ 1

ðxS
miÞ

2

!�1

þ ðxBl
miÞ

2 i ¼ 1; 2; . . . ; ð9Þ
where i ¼ 1 belongs to the first mode of vibration, xB0
mi and xBl

mi are the circular frequencies of beams with

bending stiffnesses D0 and Dl, respectively; and xS
mi is the circular frequency of a beam which undergoes

shear deformation only and whose shear stiffness is S. From the second row of Table 2 we have
2

r frequencies of beams capable bending deformations only or shear deformations only

B S
M
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xB0
mi ¼ lBi

ffiffiffiffiffiffiffiffiffiffi
D0

mH 4

r
; xBl

mi ¼ lBi

ffiffiffiffiffiffiffiffiffiffi
Dl

mH 4

r
; xS

mi ¼ lSi

ffiffiffiffiffiffiffiffiffiffi
S

mH 2

r
; ð10Þ
where m is the mass per unit height.

Numerical comparisons with the exact solution for the circular frequencies shows that for i ¼ 1 Eq. (9)
may underestimate the circular frequency by up to 16% ð�16%6Er6 0Þ for i ¼ 2 may underestimate the

circular frequency by up to 11% and overestimate it by up to 9% ð�11%6Er6 9%Þ, while for i ¼ 3 may

underestimate the circular frequency by up to 4% and overestimate it by up to 6% ð�4%6Er6 6%Þ.
The accuracy of this approximation is suitable for design purposes. However, in some special cases the

designer would need more accurate results, thus we suggest a correction factor to reduce the errors of

Eq. (9). We derived an approximate formula in the function of the stiffness ratios a ¼ H
ffiffiffiffi
S
Dl

q
and b ¼

ffiffiffiffi
Dl

D0

q
:

x2
m1 ¼

1

ðxB0
m1Þ

2

 24 þ 1

ðxS
m1Þ

2

!�1

þ ðxBl
m1Þ

2

3
5,ð1� f Þ; ð11Þ
where
f ¼ 2

100ð1þ 2:7bÞ
1:1

1:1þ e�1:6n � e�0:0125n

�
� 1

	
; n ¼ að1þ 4bÞ: ð12Þ
Eq. (11) may overestimate and underestimate the lowest circular frequency by up to 2.3%
ð�2:3%6Er6 2:3%Þ.
5.1.2. Spatial problem

The replacement beam of the stiffening system has the following stiffnesses (Potzta and Koll�ar, 2003):
½D0	 ¼
D0zz D0zy D0zx

D0yz D0yy D0yx

D0xz D0xy D0xx

2
64

3
75; ½Dl	 ¼

Dlzz Dlzy Dlzx

Dlyz Dlyy Dlyx

Dlxz Dlxy Dlxx

2
64

3
75

½S	 ¼
Syy Syz Syx

Szy Szz Szx

Sxz Sxy Sxx

2
64

3
75; Dt;

ð13Þ
where ½D0	 and ½Dl	 are the matrices of the global and local bending stiffnesses, respectively, ½S	 is the shear
stiffness matrix and Dt is the torsional stiffness. The calculation of the elements of ½D0	, ½Dl	, and ½S	 are
given in Section 4. (We note that the axis of the replacement beam passes through the centroid of the

coordinate system which may be chosen arbitrarily.)

The circular frequencies for beams where both ends are simply supported and ½Dl	 is zero were derived in
Koll�ar (2001). Following the same steps as in Koll�ar (2001) but taking also ½Dl	 into account, we obtain the
following eigenvalue problem for the circular frequency, xmi (see Eq. (13) in Koll�ar (2001))
H 4

l2Bi

½D0	�1
�"

þ H 2

l2Si
½S	�1

	�1

þ l2Bi

H 4
½Dl	 þ

l2Si
H 2

½G	 � x2
mim½M 	

# v0m
w0m

w0m

8<
:

9=
; ¼ 0; ð14Þ
where for simply supported beams lBi and lSi are given in the first row of Table 2; m is the mass per unit
height, matrices ½M 	 and ½G	 are
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½M 	 ¼
1 0 zm
0 1 �ym

zm �ym
H
m þ y2m þ z2m

2
4

3
5; ½G	 ¼

0 0 0

0 0 0

0 0 Dt

2
4

3
5; ð15Þ
H is the polar moment of mass (per unit height) about the mass center, and ym, zm are the coordinates of the
mass center. The eigenvector of Eq. (14) contains the amplitudes of vibration in the x–z plane ðw0mÞ, x–y
plane ðv0mÞ and the amplitude of the torsional mode ðw0mÞ.
For a cantilever beam, we adopt Eq. (14) as an approximation, but we introduce values for lBi and lSi

given in the second row of Table 2. We obtain three circular frequencies (and three corresponding eigen-

vectors) for each value of i. The accuracy of Eq. (14) was also investigated numerically. We obtained the

same accuracy for x as for the plane problem.

Doubly symmetrical building. When both the x–z and the x–y planes are symmetry planes, the building
vibrates either in the x–z plane, or in the x–y plane, or torsionally about the x-axis. In this case the off-

diagonal elements of matrices ½D0	, ½Dl	, and ½S	 are zero, and, accordingly, Eq. (14) gives the following three
sets of circular frequencies:
x2
ymi ¼

1

l2Bi
D0zz
mH4

 
þ 1

l2Si
Syy

mH2

!�1

þ l2Bi

Dlyy

mH 4
; vibration in the x–y plane;

x2
zmi ¼

1

l2Bi
D0yy

mH4

 
þ 1

l2Si
Szz

mH2

!�1

þ l2Bi

Dlzz

mH 4
; vibration in the x–z plane;

x2
xmi ¼

1

l2Bi
D0xx
HH4

 
þ 1

l2Si
Sxx
HH2

!�1

þ l2Bi

Dlxx

HH 4
þ l2Si

GIt
HH 2

; torsional vibration:

ð16Þ
We observe that the expression for x2
zmi is identical to Eq. (9) developed for the plane problem.

Doubly symmetrical building with unsymmetrical mass. When the building is symmetrical with respect to

both the x–z and the x–y planes, however the mass is not symmetrical with respect to these planes, Eq. (14)
simplifies to
x2
ymi

x2
zmi

H
m x2

xmi

2
4

3
5

8<
: � x2

mi½M 	

9=
;

v0m
w0m

w0m

8<
:

9=
; ¼ 0; ð17Þ
where ½M 	 is defined by Eq. (15) and xymi, xzmi, and xxmi are given in Eq. (16).

5.2. Additional mass at the top

5.2.1. Plane problem

When there is an additional mass ðMÞ at the end of the cantilever (Fig. 4), the lowest circular frequency
may be approximated by using Dunkerley�s theorem as
x2 ¼ 1

x2
m1

�
þ 1

x2
M

	�1

; ð18Þ
where
x2
M ’ 1

ðxB0
M Þ2

 
þ 1

ðxS
MÞ

2

!�1

þ ðxBl
MÞ

2 ð19Þ



Fig. 4. Sandwich beam (a); constant mass distribution (b); constant mass and additional mass at the top (c).
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and (see Table 2, third row)
xB0
M ¼

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
D0

MH 3

r
; xBl

M ¼
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
Dl

MH 3

r
; xS

M ¼
ffiffiffiffiffiffiffiffi
S

MH

r
: ð20Þ
The accuracy of Eq. (19) was found to be �6%6Er6 0.

5.2.2. Spatial problem

In case of spatial vibration the circular frequencies belonging to i ¼ 1 can be calculated as (see Dun-

kerley�s theorem)
x2 ¼ 1

x2
m1

�
þ 1

x2
M

	�1

; ð21Þ
where xM is calculated from the following equation (Potzta and Koll�ar, 2003):
H 3

3
½D0	�1

�"
þ H ½S	�1

	�1

þ 3

H 3
½Dl	 þ

1

H
½G	 � x2

miM ½X	
# v0M

w0M

w0M

8<
:

9=
; ¼ 0; ð22Þ
where M is the additional mass at the top and matrix ½X	 is given by
½X	 ¼
1 0 zM
0 1 �yM

zM �yM
H
M þ y2M þ z2M

2
4

3
5; ð23Þ
where H is the polar moment of mass (at the top) about the mass center, and yM , zM are the coordinates of

the mass center.

Care must be taken in the use of Eq. (21). Eq. (21) may give unacceptable error when the horizontal
distribution of masses at the top is significantly different from the mass distribution on the other floors. In

this case the eigenvectors for the uniform mass distribution and those for the mass on the top are very

different. Hence, the use of Eq. (21) is recommended only if the scalar product of the eigenvectors are close

to unity, say v0Mvom þ w0Mw0m þ w0Mw0m > 0:9.
6. Internal forces

In the response modal analysis of buildings subjected to earthquakes an equivalent load is determined in
each mode of vibration. For in-plane vibration, when the ground motion is in the plane of the vibration, the

horizontal force is (Chopra, 1995)
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Mod

1

2

3
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fiðxÞ ¼
R H
0

m/iðxÞdxR H
0

m/2
i ðxÞdx

m/iðxÞSAi; ð24Þ
where SAi is the spectral acceleration (which depends on the period of vibration, damping and the ground

peak acceleration), and /i is the mode shape.

For spatial vibration (Chopra, 1995)
ff gi ¼
fyi

fzi

fxi

8<
:

9=
; ¼

R H
0
f/iðxÞg

T½M 	dxfigR H
0
f/iðxÞg

T½M 	f/iðxÞgdx
m½M 	

/yiðxÞ
/ziðxÞ
/HniðxÞ

8<
:

9=
;SAi; ð25Þ
where fyi and fzi are horizontal forces in the y and z directions, respectively, fxi is the resultant moment

about the x-axis, and fig is the influence vector (Chopra, 1995), which represents the direction of excitation.
For example if the excitation is in the x–y plane fig ¼ f1; 0; 0g, if the excitation is in the x–g plane (where g
is in the y–z plane, and the angle between y and g is #) fig ¼ fcos#; sin#; 0g, and for torsional excitation
fig ¼ f0; 0; 1g.
6.1. Uniform mass distribution along the height

6.1.1. Plane problem

In this section we consider symmetrical structures subjected to earthquakes in the symmetry plane.

Base shear force. The total horizontal load, which is identical to the base shear force, is obtained by

integrating Eq. (24) over the height of the building.

For uniform mass distribution, integration of Eq. (24) gives
Vi ¼
Z H

0

fiðxÞdx ¼

R H
0

/iðxÞdx
� �2
R H
0

/2
i ðxÞdx

mSAi ¼ mimHSAi; ð26Þ
the values of the multiplier, mi are given in Table 3 for the first, second and third periods of vibration for
beams undergo bending deformation (mi ¼ mB1, mi ¼ mB2, mi ¼ mB3) and for beams undergo shear deformation

only (mi ¼ mS1, mi ¼ mS2, mi ¼ mS3).

For a sandwich beam, the multiplier lies between these two values i.e. for the first period of vibration

0:61 < mi < 0:81, and for the second period of vibration 0:09 < mi < 0:188 and for the third

0:032 < mi < 0:065. To estimate mi for a sandwich beam we adopt the approximate formula of the circular

frequency. Eqs. (9) and (10) gives
3

lues of the multiplier, mi for the calculation of the internal forces

e Deformation Base shear force Shear force at 3=4H Base overturning moment

Bending deformation only ðmB1Þ 0.61 0.32 0.45

Shear deformation only ðmS1Þ 0.81 0.32 0.52

Bending deformation only ðmB2Þ 0.188 0.09 0.039

Shear deformation only ðmS2Þ 0.09 0.09 0.018

Bending deformation only ðmB3Þ 0.065 0.033 0.00825

Shear deformation only ðmS3Þ 0.032 0.033 0.0044
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1 ¼ 1

l2Bi
D0

mH4

 0@ þ 1

l2Si
S

mH2

!�1

þ l2Bi

Dl

mH 4

1
A

�1

x2
mi: ð27Þ
The value of mi is approximated as
mi ¼
mBi

l2Bi
D0

mH4

 0@ þ mSi

l2Si
S

mH2

!�1

þ 1

mBi
l2Bi

Dl

mH 4

1
A

�1

x2
mi; ð28Þ
where mBi and mSi are given in Table 3. This expression gives the exact value for mi when S ! 1, or S ! 0, or

D0 ! 0, or D0 ! 1 and Dl ! 0. For arbitrary values of D0, Dl and S Eq. (28) was verified numerically.

Comparisons with the exact solution of Eq. (26) for a sandwich beam showed that the accuracy of Eq. (28)

for m1 is �9% < Er < 0, for m2 is �37% < Er < 0, while for m3 is �27% < Er < 0.

Shear force at height 3=4H . The distribution of the horizontal forces is determined by the mode shape of

the beam (see Eq. (24)). In the first, second, and third modes of vibration the mode shape, the distribution

of horizontal seismic forces and the shear forces along the height are illustrated in Fig. 5. The maximum of

the shear force arises at the bottom of the cantilever, but in the second mode there is another local maxi-
mum (Fig. 5, middle).

This local maximum for different continuum models and different stiffness distributions was calculated,

and the location of the maximum was found to be between 0:6H and 0:9H . The maximum can be

approximated by evaluating the shear force at height 3=4H
V 3=4
i ¼ mimHSAi: ð29Þ
The constant for beams with bending deformation or shear deformation only is given in Table 3 (column
‘‘shear force at 3=4H ’’), for the first three modes. For a sandwich beam Eq. (29) mi ¼ mBi ¼ mSi can be used.
Fig. 5. Mode shapes of vibration, horizontal seismic force distribution, shear force.
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The maximum error of this approximation for m1 is �3% < Er < þ3%, for m2 is �2% < Er < 10%, while for

m3 is �7% < Er < þ4%.
(The design value of the shear force can be calculated by combining the modal responses. There are

different combination rules given in design codes. We suggest to calculate the design value of shear force at
the bottom of the cantilever and at height 3=4H . At the top of the cantilever the shear force is zero. The
shear force diagram may be approximated by fitting a second order parabola to the design value of the

shear force at these three point. See Fig. 5.)

Base overturning moment. The base overturning moment can be calculated from the horizontal load

Eq. (24) as follows.

For a uniform mass distribution we have
Mi ¼
Z H

0

xfiðxÞdx ¼
R H
0

/iðxÞdx
R H
0

x/iðxÞdxR H
0

/2
i ðxÞdx

mSAi ¼ mimH 2SAi: ð30Þ
The multiplier mi is given in Table 3 for a beam undergoes bending deformation and for a beam

undergoes shear deformation only. For a sandwich beam the multiplier lies between these two values. mi is

again calculated from Eq. (28) by introducing the values of mi given in the last column of Table 3. Numerical

comparisons showed that Eq. (28) gives the value of m1 with an error �5% < Er < 1%, while for the second

and third modes the results are not acceptable.
6.1.2. Spatial problem

Base shear force. The base shear forces and the resultant torque (Fig. 6) can be calculated from the

integration of Eq. (25).
Vyi

Vzi

Vxi

8<
:

9=
; ¼

Z H

0

fyi

fzi

fxi

8<
:

9=
;dx: ð31Þ
First we consider the case when the structure consists of lateral load-resisting subsystems which undergo

shear deformation only. In this case the functions in the eigenvector (/yi, /zi, /xi) are cosines and Eqs. (25)

and (31) give
Vyi

Vzi

Vxi

8<
:

9=
; ¼ f/0ig

T½M 	fig
f/0ig

T½M 	f/0ig
m½M 	Hmif/0igSAi; ð32Þ
Fig. 6. The base shear forces ðVyi; VziÞ, the resultant torque ðVxiÞ, and the base overturning moments ðMyi;MziÞ.
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where f/0ig is the eigenvector of Eq. (14)
f/0ig ¼
v0mi

w0mi

w0mi

8<
:

9=
;; ð33Þ
and (for i ¼ 1) mi ¼ mSi ¼ 0:81 (Table 3). The same equation applies when the lateral load-resisting sub-

systems have bending deformation only, but we must substitute mi ¼ mBi ¼ 0:61 into Eq. (32).
When the lateral load-resisting subsystems are sandwiches, the horizontal forces can be calculated by
Vyi

Vzi

Vxi

8<
:

9=
; ¼ f/0g

T½M 	fig
f/0g

T½M 	f/0g
m½M 	H

myiv0mi

mziw0mi

mxiw0mi

8<
:

9=
;SAi; ð34Þ
where myi, mzi, and mxi are multipliers with values between mBi and mSi (i.e. for i ¼ 1, 0:61 < m1 < 0:81 and for
i ¼ 2, 0:09 < m2 < 0:188), see Table 3. To obtain a reasonable estimation for m, we rearrange the expression
obtained for the circular frequencies. By multiplication of Eq. (14) by ½M 	�1=mx2

mi we obtain
v0mi

w0mi

w0mi

8<
:

9=
; ¼ H 4

l2Bi

½D0	�1½M 	
�"

þ H 2

l2Si
½S	�1½M 	

	�1

þ l2Bi

H 4
½M 	�1½Dl	 þ

l2Si
H 2

½M 	�1½G	
#�1 v0mi

w0mi

w0mi

8<
:

9=
;x2

mim: ð35Þ
Similarly as it was done for the plane problem (see Eq. (28)) we introduce ms into this equation and

obtain
myiv0m
mziw0m

mxiw0m

8><
>:

9>=
>; ¼ mBiH 4

l2Bi

½D0	�1½M 	
�"

þ mSiH 2

l2Si
½S	�1½M 	

	�1

þ l2Bi

mBiH 4
½M 	�1½Dl	 þ

l2Si
mSiH 2

½M 	�1½G	
#�1



v0mi

w0mi

w0mi

8><
>:

9>=
>;x2

mim; ð36Þ
which is an approximate expression for the vector fmyiv0mi; mziw0mi; mxiw0mig
T
. With this approximation

Eq. (34) can be directly evaluated for the seismic loads.

(Note that Eqs. (34) and (36) give the ‘‘exact’’ values of the horizontal forces (Vyi and Vzi) and the
resultant torque ðVxiÞ when the structure is doubly symmetrical and in one direction it has shear defor-

mation only, in the other direction it has bending deformation only, and in torsion it has bending or shear

deformation only.)

As a rule, Eqs. (34) and (36) give only approximate values of the forces and the resultant moment. The

numerical examples showed that the accuracies are the same as for the plane problem.

Base overturning moment. The base overturning moments can be obtained in the same way as the base

shear forces. (Note that we may use the approximation only for the first mode.)

From Eq. (25) we arrive at
Mz1

My1

B1

8<
:

9=
; ¼

Z H

0

x
fy1

fz1

fx1

8<
:

9=
;dx ¼ f/01g

T½M 	fig
f/01g

T½M 	f/01g
m½M 	H 2

my1v0m1
mz1w0m1

mx1w0m1

8<
:

9=
;SA1; ð37Þ
where Mz1, and My1 are the base overturning moments in the x–y and x–z planes. The vector on the right
hand side is approximated by Eq. (36) where mB1 ¼ 0:45 and mS1 ¼ 0:52 (see Table 3).
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We may observe that when there is only bending deformation, my ¼ mz ¼ mx ¼ 0:45, and when there is

only shear deformation, my ¼ mz ¼ mx ¼ 0:52.
6.2. Additional mass at the top

6.2.1. Plane problem

When there is an additional mass on the top, we have to take the following additional force and base
overturning moment into account:
FM ¼ MSA; MM ¼ HMSA:
6.2.2. Spatial problem

In case of spatial vibration when there are additional masses at the top, concentrated forces and moment

about the x-axis may arise on the top of the building structure. The resultant forces (V M
y and V M

z ) and
moment ðV M

x Þ are (Chopra, 1995)
V M
y

V M
z

V M
x

8<
:

9=
; ¼ f/0g

T½M 	fig
f/0g

T½M 	f/0g
M ½X	f/0gSA: ð38Þ
The additional base overturning moments have the values
MM
z ¼ HV M

y ; MM
y ¼ HV M

z :
7. Conclusion

We presented a simple approximate method for the calculation of the period of vibrations and base

internal forces of building structures with identical stories subjected to earthquakes. We considered sym-

metrical and unsymmetrical building structures stiffened by shear walls, coupled shear walls, trusses, frames

or cores. We solved the vibration problem in case of lateral, torsional and spatial lateral–torsional
vibration.

The accuracy of the approximation was verified by two numerical examples.
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Appendix A. Numerical example

In this section two numerical examples are presented to demonstrate the accuracy and robustness of the

approximate calculation.
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A.1. Symmetrical building

First we consider a doubly symmetrical building shown in Fig 7. The building is stiffened in the y
direction by solid walls while in the z direction by two solid walls at the symmetry plane and by two coupled
shear walls arranged symmetrically. The geometric and material characteristics are given in Table 5.

The approximate calculation was carried out in the following steps:

Step 1. Calculation of the stiffnesses of the lateral load-resisting subsystems (Table 2).

Step 2. Calculation of the replacement stiffnesses of the building by Eqs. (3) and (4).

Step 3. Calculation the circular frequencies by Eq. (16).

Step 4. We will calculate the base shear force for an excitation in the x–z plane (Eqs. (26) and (28)).

The periods of vibration and the base shear forces were also determined by a FE code (ETABS). In the

example uniform mass distribution was considered.

Step 1. The stiffnesses of the solid walls are (Table 2.)
Dw
0 ¼ EwaIwa ¼ 8:85
 107 kNm2; Dw

l ¼ 0; Sw ¼ 1: ðA:1Þ
The stiffnesses of the coupled shear walls are
Dc
l ¼ 2EwIwa ¼ 1:77
 108 kNm2;

Dc
0 ¼ 2EwAwaðcwÞ2 ¼ 1:37
 109 kNm2;

ðA:2Þ
Sc ¼ 6EbIb2ðd þ s1Þ2

d3h 1þ 12qEbIb
Gbd2Ab

� �
0
@

1
A

�10
@ þ 2

12EwIwa

h2

� 	�1
1
A

�1

¼ 9:99
 104 kN:
Step 2. The stiffnesses in the y direction are identical to two times those given by Eq. (A.1). The stiffnesses
in the z direction are calculated by Eqs. (3) and (4), and are (with l ¼ 2H ¼ 166:4 m)
Fig. 7. Numerical example of Appendix A.1.
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A ¼ 2
Dc
0

1þ p2Dc
0

l2
0
Sc

0
B@ þ Dc

l

1
CAþ 2Dw

0 ¼ 9:96
 108 kNm2;

B ¼ 2
Dc
0

1þ p2Dc
0

l2
0
Sc

� �2 p2Dc
0

Sc
¼ 1:07
 1013 kNm4;

C ¼ 2
Dc
0

1þ p2Dc
0

l2
0
Sc

� �3 p2Dc
0

Sc

� 	2

¼ 2:45
 1017 kNm6;

D0zz ¼
1

C
B2 � 1

l2
0

C2

B3

¼ 2:73
 109 kNm2;

Szz ¼ p2
B3

C2
¼ 5:30
 108 kN;

Dlzz ¼ A � B2

C
¼ 2:01
 105 kNm2:

ðA:3Þ
The torsional stiffnesses are (from Eq. (6) and (7))
Dlxx ¼ 1

2
r2Dc

l ¼ 7:60
 1011 kNm4; D0xx ¼ 1

2
r2Dc

0 ¼ 9:82
 1010 kNm4;

Sxx ¼ 1

2
r2Sc ¼ 5:54
 107 kNm4; Dt ¼ 0:

ðA:4Þ
Step 3. The circular frequencies are calculated by Eq. (16) by substituting lB1 ¼ 3:52, lS1 ¼ 0:5p (Table

2) which gives
xym1 ¼ 0:4042
1

sec
; xzm2 ¼ 0:8487

1

sec
; xxm3 ¼ 0:9857

1

sec
: ðA:5Þ
Note that the ETABS code results in
xym1 ¼ 0:3939
1

sec
; xzm2 ¼ 0:9125

1

sec
; xxm3 ¼ 1:080

1

sec
; ðA:6Þ
which are within 9% of the above values.

We may improve the accuracy of Eq. (A.5) by taking Eqs. (11) and (12) into account. These formulae

give instead of Eq. (A.5) the following values:
xym1 ¼ 0:4051
1

sec
; xzm2 ¼ 0:8734

1

sec
; xxm3 ¼ 1:017

1

sec
; ðA:7Þ
which is within 6% of the ETABS calculation.

Step 1. The seismic forces are determined using the Response Modal Analysis. The calculation was

carried out according to Eurocode 8. The spectral accelerations are given in the function of the period of
vibration, (Eurocode 8)
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0 < Ti < TB Sei ¼ agSt 1
�

þ Tiðgb � 1Þ
TB

�
;

TB < Ti < TC Sei ¼ agStgb;

TC < Ti < TD Sei ¼ agStgb
TC

Ti

� 	k1

;

TD < Ti Sei ¼ agStgb
TC

TD

� 	k1 TD

Ti

� 	k2

:

ðA:8Þ
The parameters in Eq. (A.8) depend on the soil condition, on the location of the structure, and on the

damping ratio. We considered St ¼ 1, ag ¼ 0:08
 9:81, b ¼ 2:5, TB ¼ 0:15, TC ¼ 0:6, TD ¼ 3, k1 ¼ 1, k2 ¼ 2,

g ¼ 1:323.
Substituting the periods of vibration Ti ¼ 2p=xmi (xmi is given by Eq. (A.5)) into Eq. (A.8) the spectral

accelerations, Sei can be determined in each mode of vibration. Base shear force in the x–z plane arise only
in the second mode, and it is calculated by Eqs. (26) and (28) which yields
Se2 ¼ 0:085;

m2 ¼
mB1

l2B1
D0

mH4

 0@ þ mS1

l2S1
S

mH2

!�1

þ 1

mB1
l2B1

Dl

mH 4

1
A

�1

x2
mi ¼ 0:6585;

Vz2 ¼ m2mHSA2 ¼ 1310:3 kN:

ðA:9Þ
The ETABS code results in Vz2 ¼ 1481:45 kN, which is within )12%.
Next we consider the same building, but we assume that the masses are offset by 5% in the y direction

(this is recommended by Eurocode 8). As a consequence, we have yM ¼ 2:035 m, ðzM ¼ 0Þ, and the circular
frequency can be determined from Eq. (17). The first line gives xm1 ¼ 0:4042, while the second and third
results in
x4
mi � x2

mi x2
xmi

�
þ x2

zmi þ
m
H

x2
zmiy

2
M

�
þ x2

xmix
2
zmi ¼ 0: ðA:10Þ
From Eq. (A.10) the circular frequencies in the second and third mode can be calculated, and are
xm2 ¼ 0:8229
1

sec
; xm3 ¼ 1:016

1

sec
: ðA:11Þ
The ETABS code results in
xm2 ¼ 0:8874
1

sec
; xm3 ¼ 1:1108

1

sec
; ðA:12Þ
the error is less than 9%.

The base shear forces are calculated by Eqs. (34) and (36) which are Vz2 ¼ 1084:2 kN and Vz3 ¼ 225:32
kN. The ETABS code results in Vz2 ¼ 1254:03 kN and Vz3 ¼ 220:43 kN. The error of the approximate

method is less than 14%.

The torque in the second mode is (Eqs. (34) and (36)) Vx2 ¼ 7394:3 kNm. The ETABS code results in

Vz2 ¼ 7889:77 KNm, the error of which is less than 7%. The calculated torque cause more than 40% increase

in the forces of the outermost load-resisting subsystems. According to EC-8 the torque may also be cal-

culated––as an approximation––by multiplying the shear force (Eq. (A.9)) by 5% of the size of the building

(and hence the torsional vibration is not needed to be considered). However this calculation yields

Vx2 ¼ 2620:6 kNm which is only 35% of the above calculated value, and hence the approximation sug-
gested by EC-8 is not conservative.
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A.2. Unsymmetrical building

We now consider the building given in Fig. 8. In this example we wish to demonstrate the robustness of

the approximate calculation. The geometric and material characteristics of the structure are given in Table
4 and Fig. 8.

The same steps are followed as in Appendix A.1.

Step 1. In the longitudinal, y direction the building structure is stiffened by four shear walls

ðk ¼ 1; 2; 3; 4Þ. In the x direction the stiffening system consists three shear walls ðk ¼ 5; 6; 7Þ and two

coupled shear walls ðk ¼ 8; 9Þ. The replacement stiffnesses of the lateral load-resisting subsystems are

(K€opecsiri and Koll�ar, 1999a)
Table

Geome

Num

Stor

Tota

Mas

Mas

You

You

Shea

Area

Mom

Area

Mom

Area

Mom
Dlk � 0; k ¼ 1; 2; 3; 4; 5; 6; 7;

Dlk ¼ 2EwIwb ¼ 3:45
 108 kNm2; k ¼ 8; 9;

D0k ¼ EwIwb ¼ 1:725
 108 kNm2; k ¼ 1; 2; 3; 4; 5; 6; 7;
Fig. 8. Numerical example of Appendix A.2.

4

tric and material characteristics of the shear walls (see Figs. 7 and 8)

ber of stories 28

y height, h 2.97 m

l height, H 83.2 m

s/unit height, m 280 640 kg/m

s moment of inertia/unit height, h 69 001 kgm2/m

ng�s modulus of walls, Ew 1.95· 107 kN/m2

ng�s modulus of beams, Eb 2.3 · 107 kN/m2

r modulus of beams, Gb 9.58· 106 kN/m2

of beams, Ab 0.07 m2

ent of inertia of beams, Ib 5.79· 10�4 m4

of walls, Awa (in Appendix A.1) 1.4640 m2

ent of inertia of walls, Iwa (in Appendix A.1) 4.5396 m4

of walls, Awb (in Appendix A.2) 2.158 m2

ent of inertia of walls, Iwb (in Appendix A.2) 8.85 m4
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D0k ¼ 2EwAwbðcwÞ2 ¼ 2:02
 109 kNm2; k ¼ 8; 9;

Sk � 1; k ¼ 1; 2; 3; 4; 5; 6; 7;

Sk ¼
6EbIb2ðd þ s1Þ2

d3h 1þ 12qEbIb
Gbd2Ab

� �
0
@

1
A

�10
@ þ 2

12EwIwb

h2

� 	�1
1
A

�1

¼ 9:99
 104 kN; k ¼ 8; 9:
Step 2. The stiffnesses in the global coordinate system are (Potzta, 2002):
½Dl	k ¼ Dlk½R	k; ½D0	k ¼ D0k½R	k; ½S	k ¼ Sk½R	k; ðA:13Þ
where
½R	k ¼
cos2 ak � cos ak sin ak rk cos ak

� cos ak sin ak sin2 ak �rk sin ak

rk cos ak �rk sin ak r2k

2
4

3
5: ðA:14Þ
In the y direction ak ¼ 0 ðk ¼ 1; 2; 3; 4Þ, in the x direction ak ¼ p=2 ðk ¼ 5; 6; 7; 8; 9Þ, rk is the distance of
the kth lateral load-resisting subsystem to the origin of the global coordinate system (Fig. 8):

For l0 ¼ 2H the replacement stiffness matrices of the structure are (Eq. (6)):

k 1 2 3 4 5 6 7 8 9

rk 1.85 )1.85 1.85 )1.85 )9.25 5.55 1.85 )16.65 )5.55
½A	 ¼
X16
k¼1

D0k

1þ p2D0k
l2
0
Sk

0
@ þ Dlk

1
A ¼

e 0 0

0 8:171
 1013 �9:069
 1014

0 �9:069
 1014 1:258
 1016

2
64

3
75;

½B	 ¼
X16
k¼1

p2 ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k½S	
�1
k ½E	
�

þ p2

l20
½D0	k½S	

�1
k

	�1

½D0	k

¼
e 0 0

0 1:652
 1018 �1:834
 1019

0 �1:834
 1019 2:544
 1020

2
64

3
75;

½C	 ¼

½D0	 ¼ ½A	½B	�1½A	 ¼
e 0 0

0 4:041
 109 �4:486
 1010

0 �4:486
 1010 6:223
 1011

2
64

3
75;

½S	 ¼ ½A	½B	�1½A	½B	�1½A	 ¼
e 0 0

0 1:999
 105 �2:219
 106

0 �2:219
 106 3:078
 107

2
64

3
75;

½Dl	 ¼
X16
k¼1

ð½D0	k þ ½Dl	kÞ � ½D0	 ¼
6:876
 108 0 0

0 1:208
 109 �70:978
 109

0 �70:978
 109 1:293
 1011

2
64

3
75:

ðA:15Þ
We note that some of the stiffness matrices are singular because they contain a zero element in the main
diagonal. For numerical purpose we replaced the zero elements in the main diagonal by a small element e
ðe > 0Þ. (We have chosen the value of e equal to the smallest element of the main diagonal divided by 103.)
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Step 3. The natural frequencies are calculated from Eq. (14)
Table

Compa

Mod

1

2

3

4

5

6

7

8

10
H 4

l2Bi

½D0	�1
�"

þ H 2

l2Si
½S	�1

	�1

þ l2Bi

H 4
½Dl	 � x2

mim½M 	
# v0m

w0m

w0m

8<
:

9=
; ¼ 0; ðA:16Þ
where ½M 	 is a diagonal matrix
½M 	 ¼
1 0 0

0 1 0

0 0 h
m

2
4

3
5 ¼

1 0 0

0 1 0

0 0 159:09

2
4

3
5:
By substituting lB1 ¼ 3:52, lS1 ¼ 0:5p (Table 2) into Eq. (A.16) we obtain the following three eigen-

values:
x2
m1 ¼ 1:981; x2

m2 ¼ 0:635; x2
m3 ¼ 0:352:
The following three eigenvalues are obtained by substituting lB2 ¼ 22:03, lS2 ¼ 1:5p (Table 2).
Eq. (A.16) results in
x2
m4 ¼ 64:61; x2

m5 ¼ 24:86; x2
m6 ¼ 12:87:
The modes 7–9 are obtained by introducing lB3 ¼ 61:7, lS3 ¼ 2:5p into Eq. (A.16) which yield
x2
m7 ¼ 486:02; x2

m8 ¼ 195:02; x2
m9 ¼ 99:44:
The periods of vibration, T are
Ti ¼
2p
xi

: ðA:17Þ
The results of the approximate calculation and those of the ETABS code are given in Table 5. The

maximum error is )10%.
Step 4. The base shear forces are calculated by Eq. (34). The structure has one plane of symmetry (x–y),

thus from the lateral vibration in the x–y plane base shear force arises only in the y direction. However from
the lateral (x–z)–torsional vibration both a shear force and a torque arise. The base overturning moments
are calculated from Eq. (37). The internal forces in the first three modes in case of different earthquake

excitations are given in Table 6. Table 6 also contains the results of the ETABS calculation, and the errors

of the approximation.

The design value of the internal forces can be calculated by combining the modal responses (Euro-

code 8):
5

rison of the numerical and approximate results for the periods of vibration, ðT Þ, and the spectral accelerations, Sei

e Direction Period of vibration, T (s ) Error [%] Sei

Approximation ETABS

Lateral (x–z)–torsional 10.59 10.53 0.57 0.0416

x–y plane 7.89 8.26 )4.69 0.0751

Lateral (x–z)–torsional 4.46 4.32 3.24 0.234

Lateral (x–z)–torsional 1.75 1.86 )5.41 0.889

x–y plane 1.26 1.35 )6.67 1.24

Lateral (x–z)–torsional 0.78 0.83 )6.02 1.99

Lateral (x–z)–torsional 0.63 0.70 )10.0 2.47

x–y plane 0.45 0.50 )10.0 2.60

Lateral (x–z)–torsional 0.29 0.32 )9.38 2.60



Table 6

Internal forces

Mode Excitation Internal force Approximation ETABS Error [%]

2 (x–y plane) x–y Vy [kN] 1070 998.8 7.13

My [kNm] 65 635 61 147 7.34

Vz [kN] 2175 2170 0.26

3 (x–z plane-torsional) x–z Vx [kNm] 22 031 22 674 )2.84
Mz [kNm] 129 450 132 772 )2.50

Vz [kN] 223.6 253.7 )11.87
1 (x–z plane-torsional) x–z Vx [kNm] 3839 3383 8.39

Mz [kNm] 13 879 15 496 )10.43

5 (x–y plane) x–y Vy [kN] 5423 5232 3.65

My [kNm] 93 549 90 810 3.02

Vz [kN] 5415.8 5008 8.14

6 (x–z plane-torsional) x–z Vx [kNm] 50 927 48 072 5.94

Mz [kNm] 93 333 89 190 4.64

Vz [kN] 1432 1464 )2.20
4 (x–z plane-torsional) x–z Vx [kNm] 22 989 21 037 9.28

Mz [kNm] 24 711 25 987 )4.91

8 (x–y plane) x–y Vy [kN] 3938 4026 )2.20
My [kNm] 41 561 41 704 )0.34

Vz [kN] 2512 2561 )1.90
10 (x–z plane-torsional) x–z Vx [kNm] 23 428 23 363 0.28

Mz [kNm] 26 543 26 812 )1.00

Vz [kN] 1338.8 1336 0.22

7 (x–z plane-torsional) x–z Vx [kNm] 22 401 19 467 15.07

Mz [kNm] 14 124 14 350 )1.57
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fV g ¼
X9
1

ffiffiffiffiffiffiffiffiffiffiffi
fV 2

i g
q

¼
6786

6659

68358

8<
:

9=
;; fMg ¼

X9
1

ffiffiffiffiffiffiffiffiffiffiffiffi
fM2

i g
q

¼ 121601

164850

% &
:

The ETABS calculation gives
fV g ¼
X9
1

ffiffiffiffiffiffiffiffiffiffiffi
fV 2

i g
q

¼
6677

6351

64837

8<
:

9=
;; fMg ¼

X9
1

ffiffiffiffiffiffiffiffiffiffiffiffi
fM2

i g
q

¼ 118173

165600

% &
:

The maximum error is 5.43%. Including 15 modes in the ETABS calculation the design values of the base

shear force are
Vy ¼
X15
1

ffiffiffiffiffiffi
V 2

y

q
¼ 7050 kN;

Vz ¼
X15
1

ffiffiffiffiffiffi
V 2

z

q
¼ 6500 kN;
which result less than 4% error.
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